Genome-scale reconstruction of the metabolic network in Yersinia pestis, strain 91001.

نویسندگان

  • Ali Navid
  • Eivind Almaas
چکیده

The gram-negative bacterium Yersinia pestis, the aetiological agent of bubonic plague, is one of the deadliest pathogens known to man. Despite its historical reputation, plague is a modern disease which annually afflicts thousands of people. Public safety considerations greatly limit clinical experimentation on this organism and thus development of theoretical tools to analyze the capabilities of this pathogen is of utmost importance. Here, we report the first genome-scale metabolic model of Yersinia pestis biovar Mediaevalis based both on its recently annotated genome, and physiological and biochemical data from the literature. Our model demonstrates excellent agreement with Y. pestis' known metabolic needs and capabilities. Since Y. pestis is a meiotrophic organism, we have developed CryptFind, a systematic approach to identify all candidate cryptic genes responsible for known and theoretical meiotrophic phenomena. In addition to uncovering every known cryptic gene for Y. pestis, our analysis of the rhamnose fermentation pathway suggests that betB is the responsible cryptic gene. Despite all of our medical advances, we still do not have a vaccine for bubonic plague. Recent discoveries of antibiotic resistant strains of Yersinia pestis coupled with the threat of plague being used as a bioterrorism weapon compel us to develop new tools for studying the physiology of this deadly pathogen. Using our theoretical model, we can study the cell's phenotypic behavior under different circumstances and identify metabolic weaknesses that may be harnessed for the development of therapeutics. Additionally, the automatic identification of cryptic genes expands the usage of genomic data for pharmaceutical purposes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of pPCP1 Plasmids in Yersinia pestis Strains Isolated from the Former Soviet Union

Complete sequences of 9.5-kb pPCP1 plasmids in three Yersinia pestis strains from the former Soviet Union (FSU) were determined and compared with those of pPCP1 plasmids in three well-characterized, non-FSU Y. pestis strains (KIM, CO92, and 91001). Two of the FSU plasmids were from strains C2614 and C2944, isolated from plague foci in Russia, and one plasmid was from strain C790 from Kyrgyzstan...

متن کامل

Genome rearrangements of completely sequenced strains of Yersinia pestis.

Yersinia pestis has caused three worldwide plagues in human history that have led to innumerable deaths. We have completely sequenced the genomes of two strains (D106004 and D182038) of Y. pestis isolated from Yunnan Province of China. The most striking finding of our study is that large amounts of genome rearrangement events exist between the genomes of two Yunnan strains despite being isolate...

متن کامل

Complete genome sequence of Yersinia pestis strains Antiqua and Nepal516: evidence of gene reduction in an emerging pathogen.

Yersinia pestis, the causative agent of bubonic and pneumonic plagues, has undergone detailed study at the molecular level. To further investigate the genomic diversity among this group and to help characterize lineages of the plague organism that have no sequenced members, we present here the genomes of two isolates of the "classical" antiqua biovar, strains Antiqua and Nepal516. The genomes o...

متن کامل

Genome rearrangements and phylogeny reconstruction in Yersinia pestis

Genome rearrangements have played an important role in the evolution of Yersinia pestis from its progenitor Yersinia pseudotuberculosis. Traditional phylogenetic trees for Y. pestis based on sequence comparison have short internal branches and low bootstrap supports as only a small number of nucleotide substitutions have occurred. On the other hand, even a small number of genome rearrangements ...

متن کامل

Complete Genome Sequence of Pigmentation-Negative Yersinia pestis Strain Cadman

Here, we report the genome sequence of Yersinia pestis strain Cadman, an attenuated strain lacking the pgm locus. Y. pestis is the causative agent of plague and generally must be worked with under biosafety level 3 (BSL-3) conditions. However, strains lacking the pgm locus are considered safe to work with under BSL-2 conditions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular bioSystems

دوره 5 4  شماره 

صفحات  -

تاریخ انتشار 2009